
Analysis of Frequent Item set Mining of Electronic
Evidence using FP-Growth based on Map/Reduce

Pranavkumar Bhadane
P.G. Student,

SSVPS’s BS Deore College of Engineering,
Dhule, 424005,India

R.V.Patil
Associate Professor,

SSVPS’s BS Deore College of Engineering,
Dhule, 424005,India

Abstract— Association rules can mine the relevant evidence of
computer crime from the massive data and association rules
among data itemset, and further mine crime trends and
connections among different crimes. They can help detect and
leads case policies and prevent crime with given criterions.
Frequent item set mining (FIM) plays a fundamental
Associations, correlations and electronic evidence analysis
area like many real-world data mining areas. FP-growth
pattern of constant search for the most famous FIM
algorithm. Incrementing data, time and space costs FP-growth
will be mining algorithms bottleneck. Information and
communication technologies in the world, with rapid
advancements in the crimes committed are becoming
technologically intensive. Use digital devices when crime,
forensic examiners and practical frameworks which can pose
as evidence to recover the data for analyzing the methods to
adopt. Data Generation, Data Warehousing and Data Mining,
are the three essential features involved in the investigation
process. So that we proposed a a novel parallelized algorithm
called PISPO based on the cloud-computing framework
MapReduce, which is widely used to cope with largescale data
and captures both the content and state to be distributed to
the changed and original of the transactions dataset to SPO-
tree.

Keywords— computer crime; PISPO; ISPO-tree; MapReduce;
frequent itemset; data mining; association rules.

I. INTRODUCTION
The digital world has penetrated every aspect of today’s
generation, both in the space of human life and mind, not
even sparing the criminal sphere of the world. According to
Jim Christy, Director of Cyber Crime Institute, forensic
science is the application of science to legal process and
therefore against crime. Science and technology, and in fact
or in a Court of law of evidence relating to the use of in the
process. When crime is aided by or digital device (s),
including forensic investigations using digital or cyber
forensic categorized under. If only one computer or digital
storage medium is digital tools, as we check in computer
forensics. Computer forensic (a.k.a. digital forensic)
forensic science, whose goal is to explain the current state
of digital artifact is a branch.
Digital Forensic Research Workshop (DFRWS) has defined
Digital Forensic Science as “the use of scientifically
derived and proven methods toward the preservation,
collection, validation, identification, analysis,
interpretation, documentation and presentation of digital
evidence derived from digital sources for the purpose of
facilitating or

furthering the reconstruction of events found to be criminal,
or helping to anticipate unauthorized actions shown to be
disruptive to planned operations”. Digital forensic science
covers computer forensics, network forensics, disk, firewall
forensics, forensics, database device, mobile device
forensics, software forensics, live system forensics, etc.
Digital forensic incident (s) and professionals who have
developed and applied advances has been described as
driven. DFRW media analyze a digital forensic analysis,
the other two code analysis and network analysis being
identified as three main specific type. This paper digital
forensic investigation process introduces a framework for
the physical storage device. It is also a tool to access and
analyze its contents flash drive is a specific case. Paper
details stored on the Flash drive data preprocessing steps to
bring out information.
The key contribution of this research is proposing and
developing a novel tree structure for maintaining frequent
patterns about electronic evidence in an incremental
dataset.
We offer algorithm ISPO-tree (single pass ordered tree)
based on both content and an innovative approach for
parallelizing Map Reduce FP-FP-growth algorithm for a
tree change also have captured the State of transactions in
the dataset that intelligently on a large scale mining
operations and functions in computational free shards Map
Reduce jobs map. This computer failures with the ability to
start from the tree can achieve near linear speedup.

II. LITERATURE SURVEY

[1] J. W. Han, J. Pei, and Y. W. Yin, Mining frequent
patterns in transaction databases, time series databases, and
many other kinds of databases has been studied popularly
in data mining research. Most of the previous studies adopt
an Apriori -like candidate set generation-and-test approach.
Ho w ever, candidate set generation is still costly,
especially when there exist prolic patterns and/or long
patterns.
In this study, we propose a novel frequent pattern tree (FP-
tree) structure, which is often about the pattern is
compressed, important information for an extended prefix
tree structure, the complete set of patterns and pattern piece
by mining an efficient FP-tree based mining mode, FP-
growth, develop. With three potential mining techniques
AC hived: (1) a large database is a highly compact, much
smaller data structure which avoids expensive, repeated
database scans, (2) our FP-tree is narrow-based mining in

Pranavkumar Bhadane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4058-4061

www.ijcsit.com 4058

large numbers to avoid costly generation candidate set a
pattern fragment growth method adopts, and (3) a split-
divide and conquer method, small mined databases for a set
of conditional conned patterns to decompose in mining
operations, which dramatically reduces the search space.
FP-growth method is efficient and scalable for both long
and short mining our performance study shows patterns
often, and an order of magnitude is ab out faster Apriori
algorithm and even faster recently reported new frequent
pattern mining methods.
[2]Le Wang∗ , Lin Feng∗ , Jing Zhang, Pengyu Liao,
Mainstream parallel algorithms for mining frequent
itemsets (patterns) were designed by implementing FP-
Growth or Apriori algorithms on MapReduce (MR)
framework. Current Mr FP-growth algorithm data between
nodes cannot be evenly distributed, and Mr. Apriori
algorithms use multiple processes map/reduce and even
with the value of the generated several key value pairs;
Tthesedisadvantages hinder their Performance. This paper
proposes an algorithm FIMMR: it first of all local
candidates as each data segment often item sets Khan,
sorting applies strategies candidates, and then identifies
global frequent item sets candidates. Experimental results
show that FIMMR outperforms efficiency of PFP and SPC
for quite some time; and minimum support threshold
FIMMR small under one of the other two algorithms, order
of magnitude improvements can achieve; Meanwhile,
FIMMR of speedup is satisfactory.
[3] S. K. Tanbeer, C. F. Ahmed, and B. S. Jeong, et al,
FP-growth algorithm using FP-tree has been widely studied
for frequent pattern mining because it can give a great
performance improvement compared to the candidate
generation-and-test paradigm of Apriori. However, it still
requires two database scans which are not applicable to
processing data streams. In this paper, we present a novel
tree structure, called CP-tree (Compact Pattern tree), that
captures database information with one scan (Insertion
phase) and provides the same mining performance as the
FP-growth method (Restructuring phase) by dynamic tree
restructuring process. Moreover, CP-tree can give full
functionalities for interactive and incremental mining.
Extensive experimental results show that the CP-tree is
efficient for frequent pattern mining, interactive, and
incremental mining with single database scan.
[4] Sankalp Mitra1, Suchit Bande2, Shreyas Kudale3,
Advait Kulkarni4, Asst. Prof. Leena A. Deshpande, et
al, As an important part of discovering association rules,
frequent itemsets mining plays a key role in mining
associations, correlations, causality and other important
data mining tasks. Since some traditional frequent itemsets
mining algorithms are unable to handle massive small files
datasets effectively, such as high memory cost, high I/O
overhead, and low computing performance, an improved
Parallel FP-Growth (IPFP) algorithm and discuss its
applications in this paper. In particular, a small files
processing strategy for massive small files datasets to
compensate defects of low read/write speed and low
processing efficiency in Hadoop. Moreover, use of
MapReduce to implement the parallelization of FP-Growth
algorithm, thereby improving the overall performance of

frequent itemsets mining. The experimental results show
that the IPFP algorithm is feasible and valid with a good
speedup and a higher mining efficiency, and can meet the
rapidly growing needs of frequent itemsets mining for
massive small files datasets.
[5] Jeffrey Dean and Sanjay Ghemawat, et al.,
MapReduce is a programming model and an associated
implementation for processing and generating large data
sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. In many
real world tasks such as paper model, expressible. Written
in the functional style, the program automatically
parallelized and executed on a large cluster of commodity
machines. Description of the run-time system input data, a
set of machines to determine the execution time of the
program across, dealing with machine failures, and
essential difference machine takes care of communication
management. It's easy to use the resources of a large
distributed system programmer for parallel and distributed
systems without any experience with. Our Map Reduce
implementation runs on a large cluster of commodity
machines and highly scalable: a typical Map Reduce
computation processes many terabytes of data on thousands
of machines. Find the system easy to use programmer: Map
Reduce programs have been implemented and hundreds of
upwards of one thousand Map Reduce jobs are executed on
Google groups every day.

III. FREQUENT ITEMSET MINING
Frequent itemset mining palys a key role in data mining
that focuses on looking at sequences of actions or events,
for example the order in which we get dressed. Shirt first?
Pants first? Socks second item or second shirt if
wintertime? Sequence analysis is used in a lot of different
areas, and is also highly useful in games for finding
behavioral patterns that lead to particular behaviors, for
example a player quitting a game. Here is how it works.
Frequent item set mining, data base instances (also called
transactions) that each features (also called items) takes the
form of a set of numbers. For example, items purchased
from a dataset in a social online games 4 transactions can
join as:

Gurning, Awesomeness, beautiful pet shirt sword {}
Awesomeness, cute pet, healing potion shirt {}
Gurning, sword of healing potion {}
{Shirt Awesomeness, fancy hats, cute pet}

The frequent item set mining algorithm for work items
(times at least a minimum quantity is present) support at
least a minimum defined as those item sets, all is set. If
support is set to 3, the following 1-itemsets (only one item)
dataset described above can be found at: {sword of
Grungni} and {beautiful pet}.

It is also possible to find a 2-itemset: {shirt Awesomeness,
beautiful pet}, as three transactions are both beautiful pet
shirt and Awesomeness.

Pranavkumar Bhadane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4058-4061

www.ijcsit.com 4059

IV. FREQUENT ITEMSET MIMING USING MAP/REDUCE
FIM using Map/Reduce comes with a large communication
cost, i.e., the number of sets to be mined can be very large,
moreover, the number of sets that have to be recounted can
be very large as well. Implementing such partitioning
technique in Hadoop is therefore prohibitive. A possible
solution for the recounting part, is to mine the sub
databases with a lower threshold, hence, decreasing the
number of itemsets that might have been missed. However,
another problem occurs: in fact, each shard may be local
for local sub structure is very different from the rest of the
data defines the database. As a result, the frequent item sets
quite a few shards, though many of the sets are actually
local structures and interesting so far around the world
blow. This method since we divided the data instead of the
search space are the space to deal with such problems to
have. Therefore, No additional communication is required
between mappers and no overlapping mining to check
results. More specifically diffuses by using this technique,
memory-wise for mining large datasets fit best.

V. FP-GROWTH ALGOTITHM
The FP-Growth Algorithm is an efficient and scalable
method for mining the complete set of frequent patterns by
pattern fragment growth, using an extended prefix-tree
structure for storing compressed and crucial information
about frequent patterns named frequent-pattern tree (FP-
tree). In his study, Han proved that his method outperforms
other popular methods for mining frequent patterns, e.g. the
Apriori Algorithm and the TreeProjection. In some later
works it was proved that FP-Growth has better performance
than other methods, including Eclat and Relim.The
popularity and efficiency of FP-Growth Algorithm
contributes with many studies that propose variations to
improve his performance.
After constructing the FP-Tree it’s possible to mine it to
find the complete set of frequent patterns. To accomplish
this job, Han in presents a group of lemmas and properties,
and thereafter describes the FP-Growth Algorithm as
presented below.

Algorithm: FP-Growth
Input: A database DB, represented by FP-tree constructed,
and a minimum support threshold?
Output: The complete set of frequent patterns.
Method: call FP-growth (FP-tree, null).
Procedure FP-growth (Tree, a) {
(01) If Tree contains a single prefix path then // Mining
single prefix-path FP-tree {
(02) Let P be the single prefix-path part of Tree;
(03) Let Q be the multipath part with the top branching
node replaced by a null root;
(04) For each combination (denoted as ß) of the nodes in
the path P do
(05) Generate pattern ß ∪ a with support = minimum
support of nodes in ß;
(06) Let freq pattern set (P) be the set of patterns so
generated;
}
(07) Else let Q be Tree;

(08) For each item ai in Q do {// Mining multipath FP-tree
(09) Generate pattern ß = ai ∪ a with support = ai .support;
(10) construct ß’s conditional pattern-base and then ß’s
conditional FP-tree Tree ß;
(11) If Tree ß ≠ Ø then
(12) Call FP-growth (Tree ß, ß);
(13) Let freq pattern set (Q) be the set of patterns so
generated;
}
(14) Return (freq pattern set (P) ∪ freq pattern set (Q) ∪
(freq pattern set (P) × freq pattern set (Q)))
}
When a single prefix path FP-tree, full set often patterns
can be generated in three parts: single prefix path P, Q and
their combinations multipath (01-03 and 14 lines). A single
prefix path for the resulting pattern is that enumerations
support its sub paths (04-06 lines). Thereafter, (line 03 or
07) multipath Q is defined and the resulting patterns are
processed from it (lines 8 to13). Finally, in line 14 results
found are returned as consistent patterns.

SPO-Tree:
Single Pass Ordered Tree SPO-Tree captures information
with a single scan for incremental mining. All items in a
transaction are inserted/sorted based on their frequency.
The tree is reorganized dynamically when necessary. SPO-
Tree allows for easy maintenance in an incremental or data
stream environment.

CP-Tree
Although CAN tree offer simple single pass construction
process, it usually lead poor compaction in tree size
compared FP tree. Therefore, it is storage and runtime
inefficient causing higher mining time since the item in the
tree are not stored in frequency descending order.[4] CP-
tree (Compact Pattern tree)[1], is a compact prefix-tree
structure which is constructed with one database scan and
provides the same mining performance as the FP-growth
technique by efficient tree restructuring process. Build
action mainly consists of two steps: Insert step inserts the
transaction (s) CP-tree item appearance and update
frequency counting I-list; According to related items and
restructuring, according to the frequency of items that I list
rearranges and tree nodes descending new I-list according
to restructures. This step in restructuring the branch
restructuring [2] (BRM). In restructuring the branch
method this restructuring it unclassified path one after
another sorting and I-list in descending order by frequency.
CP-can tree from the tree and more negligible cost
restructuring despite the tree data structure extremely
compact; CP-a significant performance gain on overall
runtime tree.

CAN-Tree
CAN Tree require only one database scan, this is differ
from the FP tree that two database scan require. In CAN
tree item arranged in some canonical order, which can be
determined by user prior to the mining process or at a run
time during mining process so it is unaffected by the item
frequency unlike FPtree. Lexicographic order or item that

Pranavkumar Bhadane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4058-4061

www.ijcsit.com 4060

can be arranged in alphabetic order. Trees are good (i) item
can totally order incremental updates is unaffected by
changes in frequency caused by. (ii) At least her children as
high as the sum of the frequencies of the frequency of node
in the tree. Build tree can we similarly consistent pattern
such as FP-tree approach and use the divide-and-conquer
approach. That this traverse upwards in the database. Since
items constantly in our Cantered Ordered, any insertions,
deletions, and modifications of the transaction has no effect
on the command tree item.

VI. CONCLUSIONS AND FUTURE WORK
The improved algorithm named as PISPO based on the
character of evidence record, which needed to update a
little sometime, which not only reduce the overall number
of tree branches but also update the tree in real time. When
adding new criminal record or some record has been
changed, flag should distribute the item for a prefix tree
updates. Items and flags in a transaction are inserted into
the tree based on a descending order of frequency. The tree
is reconstructed once the proportion of the edit distance of
items in the sorted order changes above a certain threshold.
This algorithm is based on a novel data and computation
distribution scheme, which eliminates communication
among computers virtually and makes it possible for us
with the MapReduce model. We demonstrated that the
algorithm is effective when on massive data scene should
be mining. Our future work will extract and correlate the
evidence stored by the jpg, rmvb, doc, wvm and so on
based on non-relational database such as MongoDB.

REFERENCES
[1] J. W. Han, J. Pei, and Y. W. Yin, "Mining frequent patterns without

candidate generation," Proceedings of the 2000 ACM SIGMOD,
June, 2000, Dallas, TX USA, pp. 1-12.

[2] Le Wang∗ , Lin Feng∗ , Jing Zhang, Pengyu Liao, “An Efficient
Algorithm of Frequent Itemsets Mining Based on MapReduce”,
Journal of Information & Computational Science 11:8 2014) 2809–
2816 May 20, 2014.

[3] S. K. Tanbeer, C. F. Ahmed, and B. S. Jeong, et al, "CP-Tree: a tree
structure for single-pass frequent pattern mining," Advances in
Knowledge Discovery and Data Mining, Springer, LNCS, Vol. 5012,
2008, pp. 1022-1027.

[4] Sankalp Mitra1, Suchit Bande2, Shreyas Kudale3, Advait Kulkarni4,
Asst. Prof. Leena A. Deshpande, “Efficient FP Growth using
Hadoop - (Improved Parallel FP-Growth)”, International Journal of
Scientific and Research Publications, Volume 4, Issue 7, July 2014 1
ISSN 2250-3153.

[5] J. Dean, and S. Ghemawat, "MapReduce: simplified data processing
on large clusters," Communications of the ACM (CACM), Vol. 51,
No. 1, January 2008, pp. 107-113.

[6] S. L. Garfinkel, "Digital forensics research: the next 10 years,"
Digital Investigation (the Proceedings of DFRWS '10), Vol. 7,
Supplement, August 2010, pp. s64-s73.

[7] L. Zhou, Z. Y. Zhong, and J. Chang, et al, "Balanced parallel FP-
Growth with MapReduce" IEEE Youth Conference on Information
Computing and Telecommunications, November, 2010, Beijing,
China, pp. 243-246.

[8] S. G. Totad, G. RB, and P. P. Reddy, "Batch processing for
incremental FP-tree construction," International Journal of Computer
Applications, Vol. 5, No. 5, August 2010, pp. 28-32.

[9] Y. S. Koh, and G. Dobbie. "SPO-tree: efficient single pass ordered
incremental pattern mining," Data Warehousing and Knowledge
Discovery (DaWaK 2011), Springer, LNCS 6862, 2011, pp. 265-
276.

[10] H. Y. Li, Y. Wang, and D. Zhang, et al, "Pfp: parallel fp-growth for
query recommendation," Proceedings of the 2008 ACM conference
on Recommender systems (RecSys '08), October 23-25, 2008,

Lausanne, Switzerland, pp. 107-114.

Pranavkumar Bhadane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4058-4061

www.ijcsit.com 4061

